Chaos Monkey Alternatives - Docker
Pumba
Pumba is a powerful Chaos testing tool for injecting Chaos in Docker. It can kill, pause, stop, and remove Docker containers with highly-configurable selection rules. It can also perform network emulation through delays, packet loss, rate limiting, and more.
Get started by downloading the latest binary release and setting its permissions.
sudo curl -L https://github.com/alexei-led/pumba/releases/download/0.5.2/pumba_linux_amd64 -o /usr/bin/pumba &&
sudo chmod +x /usr/bin/pumba
Execute Pumba Within a Container
If you’d prefer to run Pumba from within a Docker container, you can preface your Pumba command with the following. This creates a temporary container using the gaiaadm/pumba
image. The -v
flag bind-mounts the local docker.sock
file to the same path in the container, so Pumba can connect to the Docker daemon. The --rm
flag makes the container temporary and -it
creates an interactive shell so we can pass the pumba
command that follows.
docker run -it --rm -v /var/run/docker.sock:/var/run/docker.sock gaiaadm/pumba \
<PUMBA_COMMAND>
Killing a Random Container
-
Create a Docker container.
docker run -l service=nginx --name nginx -p 80:80 -d nginx docker container ls
# OUTPUT CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES b9df13525a13 nginx "nginx -g 'daemon of…" 4 minutes ago Up 4 minutes 0.0.0.0:80->80/tcp nginx
-
This command attempts to kill a random container every 30 seconds. The
--dry-run
flag simulates the result, so remove it to perform actual killings.pumba -l info --random --dry-run --interval 30s kill INFO[0000] killing container app=pumba dryrun=true function=github.com/alexei-led/pumba/pkg/container.dockerClient.KillContainer id=b9df13525a139d9a4a55a249b9cff37ba4656b72b4971fbc1f85d93058f2770d name=/nginx signal=SIGKILL source=container/client.go:115
Network Emulation
Pumba uses the tc
utility for performing network emulation, which is typically installed with the iproute2
tool set. We’ll be creating containers using Alpine Linux distributions in these samples, but make sure your own container images contain a copy of the tc
utility when performing network emulations.
Causing Delays
-
Issue the following command to create a container named
networker
. This ensuresiproute2
is up to date and performs a ping ongoogle.com
for testing.docker run --rm --name networker -it alpine sh -c "apk add --update iproute2 && ping google.com"
# OUTPUT fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/main/x86_64/APKINDEX.tar.gz fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/community/x86_64/APKINDEX.tar.gz (1/6) Installing libelf (0.8.13-r3) (2/6) Installing libmnl (1.0.4-r0) (3/6) Installing jansson (2.11-r0) (4/6) Installing libnftnl-libs (1.1.1-r0) (5/6) Installing iptables (1.6.2-r0) (6/6) Installing iproute2 (4.13.0-r0) Executing iproute2-4.13.0-r0.post-install Executing busybox-1.28.4-r1.trigger OK: 8 MiB in 19 packages PING google.com (172.217.3.174): 56 data bytes 64 bytes from 172.217.3.174: seq=0 ttl=127 time=8.992 ms 64 bytes from 172.217.3.174: seq=1 ttl=127 time=9.965 ms 64 bytes from 172.217.3.174: seq=2 ttl=127 time=10.332 ms
-
Open a second terminal and issue the following command to cause a
5000
milliseconddelay
over a total of15
seconds.pumba -l info netem --duration 15s delay --time 5000 networker
# TERMINAL 2: OUTPUT INFO[0000] Running netem command '[delay 5000ms 10ms 20.00]' on container 2a4066e2865ed24464fa458982374795d62df11b0368e0886f77fc62cdc47664 for 15s app=pumba function=github.com/alexei-led/pumba/pkg/container.dockerClient.NetemContainer source=container/client.go:220 INFO[0000] start netem for container app=pumba dryrun=false function=github.com/alexei-led/pumba/pkg/container.dockerClient.startNetemContainer id=2a4066e2865ed24464fa458982374795d62df11b0368e0886f77fc62cdc47664 iface=eth0 name=/networker netem=delay 5000ms 10ms 20.00 source=container/client.go:276 tcimage= INFO[0015] stopping netem on container IPs=[] app=pumba dryrun=false function=github.com/alexei-led/pumba/pkg/container.dockerClient.StopNetemContainer id=2a4066e2865ed24464fa458982374795d62df11b0368e0886f77fc62cdc47664 iface=eth0 name=/networker source=container/client.go:240 tc-image= INFO[0015] stop netem for container IPs=[] app=pumba dryrun=false function=github.com/alexei-led/pumba/pkg/container.dockerClient.stopNetemContainer id=2a4066e2865ed24464fa458982374795d62df11b0368e0886f77fc62cdc47664 iface=eth0 name=/networker source=container/client.go:298 tcimage=
# TERMINAL 1: OUTPUT 64 bytes from 172.217.3.174: seq=509 ttl=127 time=9.638 ms 64 bytes from 172.217.3.174: seq=512 ttl=127 time=5013.608 ms 64 bytes from 172.217.3.174: seq=514 ttl=127 time=5011.516 ms 64 bytes from 172.217.3.174: seq=510 ttl=127 time=9299.192 ms 64 bytes from 172.217.3.174: seq=511 ttl=127 time=9297.367 ms 64 bytes from 172.217.3.174: seq=516 ttl=127 time=5011.184 ms 64 bytes from 172.217.3.174: seq=513 ttl=127 time=9301.741 ms 64 bytes from 172.217.3.174: seq=518 ttl=127 time=5016.096 ms 64 bytes from 172.217.3.174: seq=519 ttl=127 time=5014.941 ms 64 bytes from 172.217.3.174: seq=515 ttl=127 time=9304.069 ms 64 bytes from 172.217.3.174: seq=527 ttl=127 time=10.468 ms
Dropping Packets
-
Issue the following command to create a container named
networker
and have it start downloading a fairly large file viacurl
.docker run --rm --name networker -it alpine sh -c "apk add --update iproute2 && apk add --update curl && curl -O http://ubuntu-releases.eecs.wsu.edu/18.04.1/ubuntu-18.04.1-desktop-amd64.iso"
# TERMINAL 1: OUTPUT % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 8 1862M 8 155M 0 0 9698k 0 0:03:16 0:00:16 0:03:00 11.4M
-
Open a second terminal and issue the
loss
command, which will drop25%
of all packets for the next2
minutes.pumba netem --duration 2m loss --percent 10 networker
You should notice the packet loss affecting the
curl
download – in this case, roughly halving download speeds.# TERMINAL 1: OUTPUT % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 13 1862M 13 259M 0 0 7403k 0 0:04:17 0:00:35 0:03:42 5807k
Injecting Failure Into Docker with Gremlin
Gremlin’s Failure as a Service platform makes it easy to run Chaos Experiments on Docker containers. You can start running experiments in just a few minutes after installing Docker. Once installed, Gremlin is intelligent enough to recognize each of your unique Docker containers and will accurately apply smart identifier tags, so you can target exactly the right services and systems. Gremlin can perform a variety of attacks against Docker containers including killing containers, manipulating network traffic, overloading CPU/memory/disk/IO, and much more.
Check out this tutorial to learn how to install Gremlin on Ubuntu and attack Docker containers. Alternatively, this guide shows how to install Gremlin within a Docker container for use against other containers.
Docker Chaos Monkey
Docker Chaos Monkey is a simple shell script that terminates Docker Swarm services. Targetable services are specified by applying the role=disposable
label.
docker service create -l role=disposable --name nginx nginx:stable
The script kills off the first Docker image with the role=disposable
label that also meets the following criteria:
- Must have more than
1
replica. - Actual and desired replica counts must be equivalent.
Here it is in action.
./chaos.sh
# OUTPUT
----------------------------------------------------------------------------
| Running this script will kill off 1 docker image with label: role=disposable
| You have 5 seconds to change your mind and CTRL+C out of this.
----------------------------------------------------------------------------
hsn3ezlkqow7 nginx replicated 2/2 nginx:stable
jam29chanegg nginx2 replicated 1/1 nginx:stable
----------------------------------------------------------------------------
hsn3ezlkqow7 nginx: swarm1
removing a container
> nginx.2.zecjcxha6zbr0bpfqb017v8vb
jam29chanegg nginx2: service has only one running container - skipping
Docker Simian Army
The Docker Simian Army is a Docker image of the Simian Army Java toolset. It doesn’t provide any additional features on its own, but it’s a useful alternative to installing the Simian Army locally. You can test it out in dry mode with the following command.
docker run -d \
-e SIMIANARMY_CLIENT_AWS_ACCOUNTKEY=$AWS_ACCESS_KEY_ID \
-e SIMIANARMY_CLIENT_AWS_SECRETKEY=$AWS_SECRET_ACCESS_KEY \
-e SIMIANARMY_CLIENT_AWS_REGION=$AWS_REGION \
-e SIMIANARMY_CALENDAR_ISMONKEYTIME=true \
-e SIMIANARMY_CHAOS_ASG_ENABLED=true \
mlafeldt/simianarmy
Add the -d -p 8080:8080
flag to forward port 8080
and connect to the Simian Army REST API.